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Abstract 

Background: Air pollution has been related to mean changes in outcomes, including DNA 

methylation. However, mean regression analyses may not capture associations that occur 

primarily in the tails of the outcome distribution. 

Objectives: This study examined whether the association between particulate air pollution and 

DNA methylation differs across quantiles of the methylation distribution. We focused on 

methylation of candidate genes related to coagulation and inflammation: coagulation factor III 

(F3), intercellular adhesion molecule 1 (ICAM-1), interferon gamma (IFN-γ), interleukin-6 (IL-

6), and toll-like receptor 2 (TRL-2). 

Methods: We measured gene-specific blood DNA methylation repeatedly in 777 elderly men 

participating in the Normative Aging Study (1999-2010). We fit quantile regressions for 

longitudinal data to investigate whether the associations of particle number, PM2.5 black carbon, 

and PM2.5 mass concentrations (4-weeks moving average) with DNA methylation [expressed as 

the percentage of methylated cytosines over the sum of methylated and unmethylated cytosines 

at position 5 (%5mC)] varied across deciles of the methylation distribution. We reported the 

quantile regression coefficients which corresponded to absolute differences in DNA methylation 

(expressed in %5mC) associated with an interquartile range increase in air pollution 

concentration. 

Results: Interquartile range increases in particle number, PM2.5 black carbon, and PM2.5 mass 

concentrations were associated with significantly lower methylation in the lower tails of the IFN-

γ and ICAM-1 methylation distributions. For instance, a 3.4 µg/m3 increase in PM2.5 mass 

concentration was associated with a 0.18%5mC (95% CI: -0.30, -0.06) decrease on the 20th 
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percentile of ICAM-1 methylation, but was not significantly related to the 80th percentile 

(Estimate: 0.07%5mC, 95% CI: -0.09, 0.24). 

Conclusions: In our study population of older men, air pollution exposures were associated with 

a left shift in the lower tails of the IFN-γ and ICAM-1 methylation distributions. 
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Introduction 

Air pollution affects people every day and especially the elderly, who are a growing population 

stratum in the US. Mechanisms by which air pollution causes cardiovascular mortality and 

morbidity are not fully elucidated (Brook et al. 2010). Recent research has pointed to epigenetics 

as a potential mechanism for the adverse effects of air pollution (Breton et al. 2012; Jardim 2011; 

Madrigano et al. 2012a). Epigenetics refers to chromosome changes that do not modify the 

genetic code, but influence its expression. The most frequently examined epigenetic mechanism 

is called DNA methylation because it involves methylation of cytosine in CpG pairs. 

Several studies have related air pollution exposure to changes in epigenetic outcomes, including 

DNA methylation, but they have used standard regression methods that report the change in the 

expected value of an outcome for a given change in exposure (Baccarelli et al. 2009; Bellavia et 

al. 2013; Soberanes et al. 2012; Tarantini et al. 2009). However, focusing on the mean response 

may not well describe effects that shift the overall shape, as opposed to the location, of the 

outcome distribution. Because DNA methylation is a biological mechanism whereby cells 

control gene expression in a complex manner (stochastic dynamics, phase variation, and 

bistability) (Riggs and Xiong 2004), we hypothesized that mean regression analyses may not 

capture associations that occur primarily in the tails of the outcome distribution. 

This study examines whether air pollution affects DNA methylation across nine quantiles of the 

methylation distribution. We focus on methylation of candidate genes related to coagulation and 

inflammation: coagulation factor III (F3), intercellular adhesion molecule 1 (ICAM-1), toll-like 

receptor 2 (TRL-2), interferon gamma (IFN-γ), interleukin 6 (IL-6). Previous research has shown 

that high levels of similar markers of coagulation and inflammation increase the risk of 
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cardiovascular-related outcomes (Danesh et al. 1998; Hwang et al. 1997; Mendall et al. 1996). 

We chose to study a cohort of elderly men who may have greater susceptibility to air pollution 

exposure because of their age (Shumake et al. 2013). 

Materials and Methods 

Study population 

This prospective cohort study included male participants from the Normative Aging Study, an 

investigation established in Boston, MA, in 1963 by the U.S. Veterans Administration (Bell et al. 

1966). We measured DNA methylation on blood samples collected after an overnight fast and 

smoking abstinence during the period 1999-2009. Methylation was assessed using blood samples 

collected at one to five visits completed at 3- to 5-year intervals. About 70% of the participants 

had more than one medical visit. We excluded individual observations if C-reactive protein 

levels were greater than 10 mg/L (74 observations in 71 participants), to reduce the potential 

influence of current infections (Simon et al. 2004), leaving a total of 1,798 observations in 777 

participants. This study was approved by the Harvard School of Public Health and the Veteran 

Administration Institution Review Boards (IRB). Participants provided written informed consent 

to participate in this study, which was approved by the Veteran Administration IRB. 

Air pollution 

The relevant exposure window for the association of air pollution with DNA methylation is 

unknown. Previous studies suggested an association spread over several weeks (Baccarelli et al. 

2009; Madrigano et al. 2011; Salam et al. 2012). In the same cohort, we observed some 

associations between air pollution exposure averaged up to one month preceding the medical 

visit and the mean of the gene-specific methylation distribution (Bind et al. 2014). Therefore, we 
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chose a priori to explore a similar intermediate-term exposure window and focused on air 

pollution concentrations averaged over the monthly period preceding each participant’s 

methylation assessment. We examined only one exposure window to limit the number of tests. 

The intermediate time-window could be a proxy for short- and long-term exposures. 

The exposure variables we considered are 4-week moving averages of particle number 

concentration (including fine and ultrafine particles 0.007-3µm in diameter, number/cm3), PM2.5 

mass concentration (particles ≤ 2.5 µm in diameter, µg/m3), and PM2.5 black carbon (black 

carbon particles ≤ 2.5 µm in diameter, µg/m3). Particulate concentrations were measured hourly 

at the Harvard supersite located near downtown Boston and approximately 1 km from the 

examination center. Since the study participants lived in the Greater Boston area with a median 

distance of 20 km from the Harvard supersite, we assumed that the ambient air pollutant 

concentrations could serve as surrogates of their exposures. We measured hourly particle number 

in the 0.007–3 µm size range with a Condensation Particle Counter (TSI Inc, Model 3022A, 

Shoreview, MN), hourly PM2.5 elements with a Tapered Element Oscillation Microbalance 

(Model 1400A, Rupprecht and Pastashnick, East Greenbush, NY), and hourly PM2.5 black 

carbon concentrations using Aethalometer (Magee Scientific Co., Model AE-16, Berkeley, CA). 

From the hourly measurements, we calculated 24-h mean concentrations and then monthly 

moving averages using the corresponding 4-week lags. 

Whereas particle number is a marker for fresh local traffic emissions, PM2.5 black carbon 

originates from both local and transported traffic emissions. In Boston, transported sulfate 

particles and secondary organic aerosols constitute a large fraction of PM2.5 mass (Kang et al. 

2010). 



8 

 

DNA methylation 

We collected participant’s blood at every visit and isolated DNA to assess gene-specific DNA 

methylation using quantitative methods based on bisulfite polymerase chain reaction 

pyrosequencing (Yang et al. 2004). The degree of methylation was expressed as the percentage 

of methylated cytosines over the sum of methylated and unmethylated cytosines at position 5 

(%5mC). 

Nine candidate genes that were expressed in leukocytes and plausibly related to heart or lung 

disease were chosen for high precision pyrosequencing analysis a priori as part of a previous 

study. From those nine candidate genes, we focused on five (F3, ICAM-1, IFN-γ, TRL-2, and IL-

6) whose associated proteins are related to coagulation and inflammatory pathways. We 

previously examined the mean association between air pollution exposure and methylation of the 

same set of genes (Bind et al. 2014). 

We measured F3, ICAM-1, IFN-γ, and TRL-2, methylation levels at two to five CpG positions 

within each gene’s promoter region and calculated the mean values of the position-specific 

measurements. IL-6 methylation was quantified outside the gene’s promoter region. Exact 

positions within promoter regions, as well as primers and conditions for the assays, have been 

previously described (Bind et al. 2012). 

Weather variables 

Ambient temperatures and relative humidity were measured at the Boston Logan Airport weather 

station located 8 km from the study center over the 1999-2010 period. Since study participants 

lived throughout the metropolitan area, we assumed that the monitored temperature and humidity 

can serve as surrogates of their exposures. 
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Statistical methods 

We investigated whether air pollution levels averaged over the 4-week period before the jth visit 

of participant i was associated with the pth percentile of the DNA methylation distribution 

ψp(Yij). Because we had repeated methylation measures for 71% of the participants, we fit 

quantile regressions for longitudinal data and report the associations on the additive scale 

(Koenker 2004). This approach can be summarized as below: 

ψp(Yij | Aij, C1ij=c1, C2ij=c2, bi,p) = (β0,p+bi,p) + β1,p Aij + β2,p
T c1+ β3,p

T c2  [1] 

where: 

-Aij, Yij, C1ij, and C2ij are the air pollution exposure, DNA methylation, set of confounding 

variables, and the set of risk factors of participant i at the jth visit, respectively, 

-ψp(Yij) is the pth quantile of the Yij distribution, 

-bi,p is the random intercept for participant i included in the regression model for the pth 

quantile of the methylation distribution 

-βk,p are the coefficients related to the pth quantile regression model (k=0 to 3) 

-Variables in bold represent vectors. 

In our regression models, the dependent variable was gene-specific DNA methylation. We 

reported the quantile regression coefficients, which correspond to differences in DNA 

methylation (expressed in %5mC) associated with an interquartile range increase in air pollution 

concentration. The alpha level for statistical significance was 0.05. We adjusted for potential 

time-varying confounders (C1) such as: temperature, relative humidity, sine and cosine terms as 

a function of day of the season, and batch of methylation measurement. We also controlled for 
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time-varying factors likely to influence methylation (C2) but not exposure such as: age, diabetes, 

body mass index, smoking status (former, current, vs. never smoker), statin use, as well as 

percentages of neutrophils and lymphocytes in differential blood count. We included C2 in the 

models for efficiency and blocking any potential back-door path through unmeasured variables 

that would be a common cause of air pollution and C2 (Greenland et al. 1999). We thus assumed 

no unmeasured confounding between air pollution and methylation, given the random intercept 

and the C1 covariates (see Supplemental Material, Figure S1). 

We checked for non-linear dose-response relationships between the methylation mean and air 

pollutant concentrations, temperature, and relative humidity using generalized additive models 

and cubic splines. We found no deviation from linear dose-response relationships with respect to 

methylation, i.e. using cubic splines, we observed no significant improvement in fit relative to a 

linear model (data not shown). We conducted some sensitivity analyses restricting the study 

population to never and former smokers (i.e., using individual observations for men whose 

smoking status changed over follow-up time). Moreover, we assumed the missing mechanisms 

of the exposures and outcomes to be at random conditional on the covariates, and the 

measurement error of air pollution to be primarily Berkson (Zeger et al. 2000). 

Quantile regression does not specify any distribution for the residuals, and hence is distribution 

free. Moreover, if one takes as their regression coefficient estimates those values that minimize 

the sum of the absolute values of the residuals instead of the sum of squared residuals, the result 

is an estimate of covariate effects on the median, instead of the mean, of the outcome 

distribution. Quantile regression generalizes this approach by weighting the positive and negative 

residuals differently, which forces the regression line to other percentiles of the distribution. 
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We compared the quantile regression estimates to the ones obtained by a standard mean 

regression model. Because three methylation distributions (i.e., F3, ICAM-1, and TLR-2) had a 

point mass at zero and the residuals’ distribution showed important deviation from a Gaussian 

density, we assumed a Tweedie distribution (with a log-link) for these outcomes and reported 

associations on the multiplicative scale. For the other two outcome distributions (i.e., IFN-γ and 

IL-6 methylation), we assumed a Gaussian distribution for the residuals and presented our results 

on the additive scale. We fit the following linear mixed-effects models: 

1) Mean model for F3, ICAM-1, and TLR-2 (multiplicative scale) 

log E[Yij] = (γ0+ui)+γ1 Aij +Σk γ4k Ckij  with Yij~Tweedie and ui ~N(0,σu
2) [2] 

2) Mean models for IFN-γ and IL-6 (additive scale) 

Yij = (γ0+ui)+γ1 Aij+Σk γ4k Ckij+ εij   with εij~N(0, σ2) and ui ~N(0,σu
2) [3] 

where Aij, Yij, and Ckij correspond to the air pollution exposure, DNA methylation, and the set of 

variables for which we adjusted (i.e., confounders and risk factors) for participant i at the jth visit, 

respectively. 

We constructed an alternative way of presenting the decile-specific results by illustrating the 

actual distributional change of IFN-γ methylation associated with an interquartile range increase 

in particle number concentration. We estimated a predicted curve using the quantile regression 

coefficients and assuming a constant trend within decile intervals. 

Results 

Descriptive statistics 

At baseline, the median age of the study population was 72 years. Also 27% of the participants 

were obese (defined as body mass index greater than 30 kg/m2), 14% were diabetics, and only 
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4% were current smokers. Participants’ characteristics varied according to their total number of 

visits: individuals with more visits seemed healthier than participants with fewer visits, i.e., at 

baseline, participants with more medical visits over the study period were less likely to be former 

smokers, statin users, old, obese or diabetics (Table 1). Boston has a continental climate with 

direct influences from the ocean. While it is mostly cold and dry in winter, it is usually warm and 

humid in summer. Ambient air pollutants levels in Boston are generally below the 

Environmental Protection Agency (EPA) standards. Over the 1999-2009 study period, the 24-

hour PM2.5 mass concentrations exceeded the daily standard of 35 µg/m3 for only 13 days; 

between June and August 2002. Summary statistics of the weather and air pollution, as well as 

Spearman correlations during the study period are presented in Tables 2 and 3, respectively. A 

substantial number of measurements of particle number concentrations (i.e., 24%) were missing 

due to a later acquisition of the condensation particle counter or a lack of recording 

measurements. PM2.5 black carbon was positively correlated with PM2.5 mass (ρ=0.68). We 

found no statistical significant correlation between other pollutants. Temperature was also 

negatively correlated with particle number (ρ=-0.69), but positively correlated with PM2.5 black 

carbon (ρ=0.48) and PM2.5 mass (ρ=0.40). The gene-specific methylation distributions varied 

according to genes (Table 4). For instance, at baseline, we observed wider methylation 

distributions of IFN-γ (5th and 95th percentiles: 75.4, 91.1) and IL-6 (5th and 95th percentiles: 

25.4, 62.1), compared to that of F3 (5th and 95th percentiles: 1.0, 4.5), ICAM-1 (5th and 95th 

percentiles: 2.2, 8.2), and TLR-2 (5th and 95th percentiles: 1.5, 5.3). 

Quantile regression results 

Our results showed that the air pollution association with DNA methylation was not generally 

homogenous across quantiles (Figure 1). We observed that the negative association between 
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particle number and F3 methylation was stronger in the upper deciles of the F3 methylation 

distribution. While concentrations of particle number and PM2.5 were not associated with ICAM-

1 methylation in the upper deciles of the methylation distribution, they were negatively related to 

the lowest deciles. For instance, a 3.4 µg/m3increase in PM2.5 was associated with a 0.18%5mC 

(95%CI: -0.30, -0.06) decrease on the 20th quantile of ICAM-1 methylation, and was not 

significantly related to the 80th quantile (Estimate: 0.07%5mC, 95%CI: -0.09, 0.24). PM2.5 black 

carbon concentrations were negatively associated with the 10th to 60th percentiles of the ICAM-1 

methylation distribution and positively related to the 90th percentile. Moreover, we observed that 

the negative association between particle number and IFN-γ methylation was strongest in the 

lower deciles of the IFN-γ methylation distribution. Particle number concentrations were not 

related to the 10th and 20th percentiles but were associated with the higher deciles of the IL-6 

methylation distribution. We did not find any associations between air pollution and any of the 

deciles of the TLR-2 methylation distribution. In the analysis restricted to never and former 

smokers (consisting of 755 participants and 1,737 individual observations), we found fairly 

similar results (see Supplemental Material, Figure S2). 

The results obtained from mean regression analyses are presented in Table 5. An interquartile 

range increase in particle number concentration was negatively associated with the means of the 

F3 and IFN-γ methylation distributions. PM2.5 mass concentrations were also negatively related 

to the mean of the F3 methylation distribution. 

We propose another way of presenting the decile-specific results (i.e., finding reported in 

Figure 1). We focused on the association between particle number and the IFN-γ methylation 
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distribution (presented in 3rd top panel in Figure 1). Particle number was associated with a left 

shift in the lower tail of the IFN-γ methylation distribution (Figure 2). 

Discussion 

Our findings suggest a potential impact of air pollution on DNA methylation and heterogeneous 

associations across quantiles of some gene-specific methylation distributions. In the same cohort, 

aging has been related to hypomethylation of TLR-2 and hypermethylation of F3 and IFN-γ 

(Madrigano et al. 2012b) and compare to never and former smokers, current smokers had higher 

IL-6 methylation and lower TLR-2 and IFN-γ methylation levels (Bind et al. 2014). Moreover, 

when we used mean regression to conduct mediation analyses in the same cohort (with air 

pollution as exposure, methylation as mediator, and cardiovascular-related blood markers as 

outcomes), we estimated a positive indirect effect of PM2.5 black carbon on fibrinogen through a 

decrease in F3 methylation (Bind et al. 2014). Similarly, the positive associations of sulfate and 

ozone with ICAM-1 seemed to be partly mediated via a decrease in ICAM-1 methylation. This 

quantile regression study showed that air pollution may be associated with only one extreme of 

the methylation distribution; which suggests heterogeneity between study participants with 

respect to potential epigenetic effects resulting from air pollution exposure. 

Our results suggest that exposure to fine and ultrafine particles (sized between 0.007 and 3µm in 

diameter) is associated with decreased methylation in the upper quantiles of F3 methylation and 

the lower quantiles of IFN-γ methylation. F3, also known as tissue factor, is a major trigger of 

the coagulation cascade. F3 expression has been observed in vascular smooth muscle cells, 

endothelial cells, and fibroblasts (which play a role in wound healing) (Holy and Tanner 2010). 

High F3 levels found in atherosclerotic plaques have been shown to be critical in the 
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pathogenesis of atherothrombosis (Jude et al. 2005). Individuals with acute coronary syndromes, 

hypertension, dyslipidemia, diabetes, and cancer also have elevated F3 concentrations (measured 

for instance in endothelial cells, monocytes, macrophages, plasma) compared to individuals free 

of these diseases (Holy and Tanner 2010; Steffel et al. 2006). Furthermore, F3 induces thrombin 

formation leading to fibrin generation and activation of platelets (Jude et al. 2005). Platelets 

activation has, in turn, been observed after exposure to ultrafine particles in 57 men with 

coronary heart disease (Ruckerl et al. 2007). An intermediary mechanism could be through 

inflammatory cytokines and oxidized lipids which have been shown to up-regulate F3 expression 

(Holy and Tanner 2010; Jude et al. 2005). 

IFN-γ is a cytokine that plays a central role in the generation and release of reactive oxygen 

species (ROS). The formation of ROS is associated with lack of important antioxidants which 

causes oxidative stress (Schroecksnadel et al. 2006). According to the findings of several studies, 

oxidative stress appears to be an intermediary process between air pollution and cardiovascular 

disease (Barregard et al. 2008; Li et al. 2009; Mazzoli-Rocha et al. 2010; Schroecksnadel et al. 

2006).  

In this study, exposures to particle number, PM2.5 black carbon, and PM2.5 mass were associated 

with the lowest quantiles of ICAM-1 methylation. In a previous study, we showed that a decrease 

in ICAM-1 methylation was also related to a significant increase in the mean of ICAM-1 protein  

(Bind et al. 2014). ICAM-1 is a glycoprotein which is expressed on endothelial cells and cells of 

the immune system. Elevated ICAM-1 concentration increases the risk of myocardial infarction 

or coronary death. Our results suggest that air pollution exposure may decrease ICAM-1 
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methylation, which may result to ICAM-1 gene de-silencing and ICAM-1 protein over-

expression. 

Our findings using quantile regression are fairly consistent with mean regression analyses using 

distributed-lag models (Bind et al. 2014) or moving averages (Table 5) for exposure in the same 

cohort. Concentrations of particle number and PM2.5 black carbon were associated with F3 

hypomethylation in both the mean and quantiles analyses. In the mean regression analysis using 

moving averages for exposure, concentrations of particle number and PM2.5 black carbon were 

not significantly related to ICAM-1 methylation. This quantile analysis reveals some association 

between particle number and the low end of the ICAM-1 methylation distribution and no change 

at the high end of the distribution, demonstrating the added value of the quantile regression 

approach. In addition, for PM2.5 black carbon, we observed significant negative associations with 

the lower percentiles of the ICAM-1 methylation distribution and a positive association with the 

90th percentile, indicating an effect of broadening the distribution at both ends, which resulted in 

a non-significant change on average. Particle number concentration was associated with the 

lower percentiles and the mean of the IFN-γ methylation distribution. However, the magnitude of 

the mean estimate was smaller compared to the estimates of the lower percentiles. For example, 

an interquartile range increase in particle number concentration was associated with a 0.8%5mC 

(95%CI: 0.1, 1.4, see Table 5) and a 1.5%5mC (95%CI: 0.6, 2.4, see Figure 1) decrease in mean 

and the 20th percentile of the IFN-γ methylation distribution, respectively. 

Quantile regression allows us to describe effects that shift the overall shape, as opposed to the 

location, of the outcome distribution. For instance, while we found some evidence that exposure 

to fine and ultrafine particles (sized between 0.007 and 3 µm in diameter) shifts the low quantiles 
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of the IFN-γ methylation distribution towards lower levels, we observed no significant effect on 

the upper quantiles. Figure 2 shows the distributional change of IFN-γ methylation assuming an 

interquartile range increase in particle number concentration. Our findings suggest that 

participants with low IFN-γ methylation may be more susceptible to fine and ultrafine particles 

(sized between 0.007 and 3 µm in diameter). In our study population of older men, air pollution 

exposures were associated with a left shift in the lower tail of the IFN-γ methylation distribution. 

It is also interesting to point out that the heterogeneous associations between air pollution and 

methylation across quantiles of the methylation distribution is seen with mostly particle number 

for F3 and IFN-γ and is seen with particle number, PM2.5 black carbon, and PM2.5 mass 

concentrations for ICAM-1. Different types of pollutants and size of particles may therefore have 

varying effects on gene-specific methylation. 

Method limitations and strengths 

Individuals in the top 50% of the F3 methylation distribution (i.e., with methylation levels 

between 2.0 and 4.5%5mC, see Table 4) tend to lose about 1%5mC of methylation per IQR 

increase in particle number (see Figure 1), which corresponds to almost double the loss observed 

in individuals in the bottom 50% (i.e., with methylation levels between 1.0 and 2.0%5mC). 

Because a given CpG site in a given homozygotic cell is either (fully) methylated or (fully) 

unmethylated, we acknowledge that the first group of participants has roughly twice as many 

circulating methylated cells as the second, so the higher impact of exposure in the top 50% group 

versus the bottom 50% group may not be unexpected. Furthermore, the result is an increase by 1 

or 0.5% of the proportion of unmethylated (possibly F3-expressing) cells from a baseline of 

95.5-98% and 98-99% (see Table 4), respectively, a change whose significance is debatable. On 
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the other hand, for IFN-γ methylation the corresponding picture is that, in people with about 75-

85%5mC methylation (i.e. only 15-25% of the circulating cells are unmethylated, see Table 4), 

the frequency of unmethylated cells increases by 1% per IQR in PM2.5 mass concentration, a 

sizable and potentially significant increase. However, these arguments could be reversed if what 

matters physiologically is a large change on the ratio scale compared to the absolute scale. 

However, data collected in this study population are limited to address this issue. 

Quantile regression is a distribution-free method and allows us to obtain estimates on the 

additive scale (expressed as a change in %5mC). In contrast, the standard approach using mean 

regression requires assumptions about the distribution of the residuals or the outcome. This 

approach using quantile regression can be reused in other disciplines to target susceptible 

population. In presence of heterogeneity, reporting the exposure-association association along 

the entire outcome distribution could also add some preciseness in estimates used for risk 

assessment. Taking into account the mean effect on an outcome that is likely to differ according 

to the quantile of methylation in which participants belong could be misleading. Epidemiological 

studies reporting associations based on conditional means may miss what is happening in some 

part of the study population. 

Conclusions 

Quantile regression suggested shifts in methylation distributions associated with air pollution 

exposure that were not captured by corresponding least-square estimates of the difference in (or 

ratio of) mean methylation associated with exposure. In the case of ICAM-1 and IFN-γ 

methylation, negative associations between particle number concentration and methylation were 

concentrated on the lower deciles of the methylation distribution, that is, among individuals who 
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already had low methylation levels, consistent with a shift on the lower quantiles of the 

methylation distribution to the left. While the role of methylation in gene expression is complex, 

including no role, methylation tends to repress expression (Riggs and Xiong 2004). Hence, this is 

possible that individuals who already had higher risk of inflammation may be the ones primarily 

being affected by particles. In summary, quantile regression may capture associations that are 

only in the tails of the distribution and might be otherwise missed. This approach estimating 

associations along outcome distribution also allows us to describe distributional outcome 

changes associated with increasing exposure. This makes it a valuable tool for environmental 

epidemiology, and for providing results that might allow better risk assessment in future studies. 



20 

 

References 

Baccarelli A, Wright RO, Bollati V, Tarantini L, Litonjua AA, Suh HH et al. 2009. Rapid DNA 

methylation changes after exposure to traffic particles. Am J Respir Crit Care Med 

179(7):572-578; doi: 10.1164/rccm.200807-1097OC.  

Barregard L, Sallsten G, Andersson L, Almstrand AC, Gustafson P, Andersson M et al. 2008. 

Experimental exposure to wood smoke: Effects on airway inflammation and oxidative 

stress. Occup Environ Med 65(5):319-324; doi: 10.1136/oem.2006.032458.  

Bell B, Rose CL, Damon A. 1966. The veterans administration longitudinal study of healthy 

aging. Gerontologist 6(4):179-184.  

Bellavia A, Urch B, Speck M, Brook RD, Scott JA, Albetti B et al. 2013. DNA hypomethylation, 

ambient particulate matter, and increased blood pressure: Findings from controlled human 

exposure experiments. J Am Heart Assoc 2(3):e000212; doi: 10.1161/JAHA.113.000212; 

10.1161/JAHA.113.000212.  

Bind MA, Baccarelli A, Zanobetti A, Tarantini L, Suh H, Vokonas P et al. 2012. Air pollution 

and markers of coagulation, inflammation, and endothelial function: Associations and 

epigene-environment interactions in an elderly cohort. Epidemiology 23(2):332-340; doi: 

10.1097/EDE.0b013e31824523f0; 10.1097/EDE.0b013e31824523f0.  

Bind MA, Lepeule J, Zanobetti A, Gasparrini A, Baccarelli A, Coull BA et al. 2014. Air 

pollution and gene-specific methylation in the normative aging study: Association, effect 

modification, and mediation analysis. Epigenetics 9(3).  

Breton CV, Salam MT, Wang X, Byun HM, Siegmund KD, Gilliland FD. 2012. Particulate 

matter, DNA methylation in nitric oxide synthase, and childhood respiratory disease. 

Environ Health Perspect 120(9):1320-1326; doi: 10.1289/ehp.1104439; 

10.1289/ehp.1104439.  

Brook RD, Rajagopalan S, Pope CA,3rd, Brook JR, Bhatnagar A, Diez-Roux AV et al. 2010. 

Particulate matter air pollution and cardiovascular disease: An update to the scientific 

statement from the american heart association. Circulation 121(21):2331-2378; doi: 

10.1161/CIR.0b013e3181dbece1.  



21 

 

Danesh J, Collins R, Appleby P, Peto R. 1998. Association of fibrinogen, C-reactive protein, 

albumin, or leukocyte count with coronary heart disease: Meta-analyses of prospective 

studies. JAMA 279(18):1477-1482.  

Greenland S, Pearl J, Robins JM. 1999. Causal diagrams for epidemiologic research. 

Epidemiology 10(1):37-48.  

Holy EW, Tanner FC. 2010. Tissue factor in cardiovascular disease pathophysiology and 

pharmacological intervention. Adv Pharmacol 59:259-292; doi: 10.1016/S1054-

3589(10)59009-4; 10.1016/S1054-3589(10)59009-4.  

Hwang SJ, Ballantyne CM, Sharrett AR, Smith LC, Davis CE, Gotto AM,Jr et al. 1997. 

Circulating adhesion molecules VCAM-1, ICAM-1, and E-selectin in carotid atherosclerosis 

and incident coronary heart disease cases: The atherosclerosis risk in communities (ARIC) 

study. Circulation 96(12):4219-4225.  

Jardim MJ. 2011. microRNAs: Implications for air pollution research. Mutat Res 717(1-2):38-

45; doi: 10.1016/j.mrfmmm.2011.03.014; 10.1016/j.mrfmmm.2011.03.014.  

Jude B, Zawadzki C, Susen S, Corseaux D. 2005. Relevance of tissue factor in cardiovascular 

disease. Arch Mal Coeur Vaiss 98(6):667-671.  

Kang CM, Koutrakis P, Suh HH. 2010. Hourly measurements of fine particulate sulfate and 

carbon aerosols at the harvard-U.S. environmental protection agency supersite in boston. J 

Air Waste Manag Assoc 60(11):1327-1334.  

Koenker R. 2004. Quantile regression for longitudinal data. Journal of Multivariate Analysis, 

91(1):74.  

Li R, Ning Z, Cui J, Khalsa B, Ai L, Takabe W et al. 2009. Ultrafine particles from diesel 

engines induce vascular oxidative stress via JNK activation. Free Radic Biol Med 46(6):775-

782; doi: 10.1016/j.freeradbiomed.2008.11.025.  

Madrigano J, Baccarelli A, Mittleman MA, Sparrow D, Spiro A,3rd, Vokonas PS et al. 2012a. 

Air pollution and DNA methylation: Interaction by psychological factors in the VA 

normative aging study. Am J Epidemiol 176(3):224-232; doi: 10.1093/aje/kwr523; 

10.1093/aje/kwr523.  



22 

 

Madrigano J, Baccarelli A, Mittleman MA, Sparrow D, Vokonas PS, Tarantini L et al. 2012b. 

Aging and epigenetics: Longitudinal changes in gene-specific DNA methylation. 

Epigenetics 7(1).  

Madrigano J, Baccarelli A, Mittleman MA, Wright RO, Sparrow D, Vokonas PS et al. 2011. 

Prolonged exposure to particulate pollution, genes associated with glutathione pathways, 

and DNA methylation in a cohort of older men. Environ Health Perspect 119(7):977-982; 

doi: 10.1289/ehp.1002773; 10.1289/ehp.1002773.  

Mazzoli-Rocha F, Fernandes S, Einicker-Lamas M, Zin WA. 2010. Roles of oxidative stress in 

signaling and inflammation induced by particulate matter. Cell Biol Toxicol 26(5):481-498; 

doi: 10.1007/s10565-010-9158-2.  

Mendall MA, Patel P, Ballam L, Strachan D, Northfield TC. 1996. C reactive protein and its 

relation to cardiovascular risk factors: A population based cross sectional study. BMJ 

312(7038):1061-1065.  

Riggs AD, Xiong Z. 2004. Methylation and epigenetic fidelity. Proc Natl Acad Sci U S A 

101(1):4-5; doi: 10.1073/pnas.0307781100.  

Ruckerl R, Phipps RP, Schneider A, Frampton M, Cyrys J, Oberdorster G et al. 2007. Ultrafine 

particles and platelet activation in patients with coronary heart disease--results from a 

prospective panel study. Part Fibre Toxicol 4:1; doi: 1743-8977-4-1 [pii].  

Salam MT, Byun HM, Lurmann F, Breton CV, Wang X, Eckel SP et al. 2012. Genetic and 

epigenetic variations in inducible nitric oxide synthase promoter, particulate pollution, and 

exhaled nitric oxide levels in children. J Allergy Clin Immunol 129(1):232-9.e1-7; doi: 

10.1016/j.jaci.2011.09.037; 10.1016/j.jaci.2011.09.037.  

Schroecksnadel K, Frick B, Winkler C, Fuchs D. 2006. Crucial role of interferon-gamma and 

stimulated macrophages in cardiovascular disease. Curr Vasc Pharmacol 4(3):205-213.  

Shumake KL, Sacks JD, Lee JS, Johns DO. 2013. Susceptibility of older adults to health effects 

induced by ambient air pollutants regulated by the european union and the united states. 

Aging Clin Exp Res 25(1):3-8; doi: 10.1007/s40520-013-0001-5; 10.1007/s40520-013-

0001-5.  



23 

 

Simon L, Gauvin F, Amre DK, Saint-Louis P, Lacroix J. 2004. Serum procalcitonin and C-

reactive protein levels as markers of bacterial infection: A systematic review and meta-

analysis. Clin Infect Dis 39(2):206-217; doi: 10.1086/421997.  

Soberanes S, Gonzalez A, Urich D, Chiarella SE, Radigan KA, Osornio-Vargas A et al. 2012. 

Particulate matter air pollution induces hypermethylation of the p16 promoter via a 

mitochondrial ROS-JNK-DNMT1 pathway. Sci Rep 2:275; doi: 10.1038/srep00275.  

Steffel J, Luscher TF, Tanner FC. 2006. Tissue factor in cardiovascular diseases: Molecular 

mechanisms and clinical implications. Circulation 113(5):722-731; doi: 

10.1161/CIRCULATIONAHA.105.567297.  

Tarantini L, Bonzini M, Apostoli P, Pegoraro V, Bollati V, Marinelli B et al. 2009. Effects of 

particulate matter on genomic DNA methylation content and iNOS promoter methylation. 

Environ Health Perspect 117(2):217-222; doi: 10.1289/ehp.11898.  

Yang AS, Estecio MR, Doshi K, Kondo Y, Tajara EH, Issa JP. 2004. A simple method for 

estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. 

Nucleic Acids Res 32(3):e38; doi: 10.1093/nar/gnh032.  

Zeger SL, Thomas D, Dominici F, Samet JM, Schwartz J, Dockery D et al. 2000. Exposure 

measurement error in time-series studies of air pollution: Concepts and consequences. 

Environ Health Perspect 108(5):419-426.  

  



24 

 

Table 1. Demographical characteristics of the Normative Aging Study participants across visits. 

Visits Age (years) 
[5th, 50th, 95th 
percentiles] 

% of 
neutrophils 

[5th, 50th, 95th 
percentiles] 

% of 
lymphocytes 
[5th, 50th, 95th 
percentiles] 

 
Obesea 

 
Statin 
User 

 
Diabetic 

Smoking Status 
[Never, Former, 

Current] 

Baseline 
(n=777) 

[62, 72, 84] [48, 62, 74] [15, 26, 38] 27% 36% 14% [29%, 67%, 4%] 

Nmissing 0 22 22 0 0 0 0 
Among participants having one visit (n1=221) 
Visit 1 [64, 76, 88] [48, 63, 77] [13, 25, 37] 30% 40% 18% [26%, 70%, 4%] 
Among participants having two visits (n1=217) 
Visit 1 
Visit 2 

[60, 73, 83] 
[66, 77, 86] 

[47, 62, 74] 
[48, 64, 75] 

[15, 25, 40] 
[14, 24, 37] 

28% 
27% 

35% 
54% 

16% 
19% 

[26%, 69%, 5%] 
[26%, 70%, 4%] 

Among participants having three visits (n3=216) 
Visit 1 
Visit 2 
Visit 3 

[62, 71, 82] 
[66, 74, 86] 
[69, 78, 89] 

[47, 62, 72] 
[48, 62, 74] 
[48, 62, 76] 

[16, 26, 39] 
[15, 26, 38] 
[13, 25, 39] 

25% 
26% 
25% 

36% 
52% 
62% 

9% 
13% 
17% 

[29%, 68%, 3%] 
[28%, 69%, 3%] 
[27%, 71%, 2%] 

Among participants having four visits (n4=120) 
Visit 1 
Visit 2 
Visit 3 
Visit 4 

[60, 69, 77] 
[63, 72, 81] 
[66, 75, 84] 
[70, 78, 87] 

[49, 61, 74] 
[46, 62, 78] 
[47, 61, 76] 
[50, 63, 76] 

[15, 26, 36] 
[13, 25, 40] 
[13, 26, 37] 
[12, 25, 37] 

22% 
22% 
18% 
17% 

29% 
42% 
59% 
65% 

10% 
11% 
16% 
18% 

[38%, 58%, 4%] 
[38%, 58%, 4%] 
[38%, 59%, 3%] 
[38%, 60%, 2%] 

aObese was defined as body mass index greater than 30 kg/m2. 

Note: Three individuals had 5 visits and their characteristics were fairly healthier than the other participants. 
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Table 2. Summary statistics for the weather and air pollution variables (4-week moving 

average). 

Variable nobservations nmissing IQR Percentiles 
5th 50th 95th 

Temperature (°C) 1,798 0 13 -1 14 23 
Relative humidity (%) 1,798 0 8 58 69 77 
Particle number (number per cm3) 1,365 433 14,599 9,352 18,426 42,291 
PM2.5 black carbon (µg/m3) 1,798 0 0.26 0.46 0.74 1.04 
PM2.5 mass (µg/m3) 1,798 0 3.4 6.3 9.6 15.1 
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Table 3. Spearman correlations for the weather and air pollution variables (4-week moving 

average). 

 Temperature Relative 
humidity 

Particle 
number 

PM2.5 black 
carbon PM2.5 mass 

Temperature 1 0.41 -0.69 0.48 0.40 
Relative humidity  1 -0.05 0.55 0.24 
Particle number   1 -0.07 0.07 
PM2.5 black carbon    1 0.68 
PM2.5 mass     1 
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Table 4. Gene specific methylation (%) across visits [5th, 50th, and 95th percentiles]. 

Visits F3 mean ICAM-1 mean IFN-γ mean TLR-2 mean IL-6 mean 
nobservations 1,533 1,424 1,736 1,424 1.749 
nmissing 265 374 62 374 49 
Baseline (n=777) [1.0, 2.0, 4.5] [2.2, 4.1, 8.2] [75.4, 85.2, 91.1] [1.5, 2.8, 5.3] [25.4, 43.7, 62.1] 
Among participants having one visit (n1=221) 
Visit 1 [1.1, 1.9, 3.5] [2.6, 4.3, 7.7] [72.4, 85.2, 91.8] [1.4, 2.8, 5.0] [23.7, 43.8, 61.6] 
Among participants having two visits (n2=217) 
Visit 1 
Visit 2 

[1.0, 2.0, 4.2] 
[0.8, 2.3, 4.4] 

[2.2, 4.1, 8.4] 
[2.2, 3.9, 8.2] 

[75.4, 85.5, 90.9] 
[75.8, 86.2, 91.4] 

[1.5, 2.6, 5.1] 
[1.0, 2.6, 5.7] 

[23.7, 43.1, 65.3] 
[24.7, 42.8, 59.8] 

Among participants having three visits (n3=216) 
Visit 1 
Visit 2 
Visit 3 

[1.0, 2.0,4.5] 
[0.9, 2.5, 4.5] 
[0.9, 1.8, 4.3] 

[2.1, 3.8, 7.6] 
[2.1, 3.6, 7.8] 
[2.9, 4.2, 6.7] 

[75.8, 84.7, 91.1] 
[76.4, 86.8, 90.7] 
[76.3, 86.2, 91.1] 

[1.3, 2.8, 5.2] 
[1.5, 2.6, 5.3] 
[0.9, 2.1, 4.9] 

[28.9, 43.7, 59.8] 
[28.4, 43.0, 57.5] 
[24.9, 42.9, 59.7] 

Among participants having four visits (n4=120) 
Visit 1 
Visit 2 
Visit 3 
Visit 4 

[0.4, 2.3, 5.2] 
[1.0, 2.4, 4.8] 
[1.8, 2.9, 4.5] 
[0.7, 1.3, 3.1] 

[2.1,4.0, 9.8] 
[2.0, 3.3, 9.9] 
[2.5, 4.4, 6.1] 
[2.8, 4.0, 8.3] 

[76.9, 84.4, 90.7] 
[76.9, 85.6, 91.4] 
[75.0, 86.4, 89.3] 
[77.5, 86.2, 92.7] 

[1.9, 3.3, 5.9] 
[1.7, 3.1, 6.0] 
[1.5, 3.0, 6.3] 
[0.9, 1.6, 4.0] 

[28.9, 43.8, 61.8] 
[25.3, 43.4, 58.4] 
[28.7, 44.4, 62.9] 
[26.3, 44.9, 60.5] 

Note: This table does not include three individuals having 5 visits. 
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Table 5. Associations with mean gene-specific methylation for an interquartile increase in air 

pollutant concentration 

 F3 
mean ratioa 

(95% CI) 

ICAM-1 
mean ratioa 

(95% CI) 

TLR-2 
mean ratioa 

(95% CI) 

IFN-γ 
mean differenceb 

(95% CI) 

IL-6 
mean differenceb 

(95% CI) 
Particle 
number 

0.78  
(0.72, 0.85) 

0.97  
(0.92, 1.03) 

1.00 
(0.94, 1.08) 

-0.77 
(-1.43, -0.11) 

0.59 
(-0.55, 1.74) 

PM2.5 black 
carbon 

0.90 
(0.85,0.95) 

0.98 
(0.95, 1.02) 

1.03 
(0.98, 1.08) 

-0.41 
(-0.87, 0.04) 

0.76 
(-0.03, 1.54) 

PM2.5 mass 
0.96 

(0.93, to 1.00) 
0.97 

(0.94, 1.00) 
1.00 

(0.97, 1.03) 
-0.18 

(-0.49, 0.13) 
0.33 

(-0.19, 0.84) 
aMean ratio for F3, ICAM-1, and TLR-2 (multiplicative scale): Because the methylation distributions of 

F3, ICAM-1, and TLR-2 had a point mass at zero and the residuals’ distribution showed important 

deviation from a Gaussian density, we assumed a Tweedie distribution (with a log-link) for these 

outcomes and reported associations on the multiplicative scale. bMean difference for IFN-γ and IL-6 

(absolute scale): For the other outcome distributions (i.e., IFN-γ and IL-6 methylation), we assumed a 

Gaussian distribution for the residuals and presented our results on the additive scale.  
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Figure Legends 

Figure 1. Absolute difference in gene-specific methylation (expressed in %5mC with 95%CI) 

associated with an IQR increase in exposure (IQR=14,599 number per cm3 for particle number, 

0.26 µg/m3 for PM2.5 black carbon, and 3.4 µg/m3 for PM2.5 mass), according to the deciles of the 

methylation distribution 

Figure 2. Empirical IFN-γ methylation distribution and its associated predicted distribution 

assuming an IQR increase in particle number concentration. The results show that instead of air 

pollution being associated with a shifting of the entire distribution to the left, it is associated with 

a distortion of its shape, increasing in particular the probabilities of lower methylation levels.  
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